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ABSTRACT

Jentink, Thomas Neil. MSAA, Purdue University, August, 1989. Formulation Of
Boundary Conditions For The Multigrid Acceleration Of The Euler And Navier Stokes
Equations. Major Professor: William J. Usab, Jr.

An explicit, Multigrid algorithm has been written to solve the Euler and Navier
Stokes equations with special consideration given to the coarse mesh boundary
conditions. These are formulated in a manner consistent with the interior solution,
utilizing forcing terms to prevent coarse-mesh truncation error from affecting the fine-
mesh solution. A 4-Stage Hybrid Runge-Kutta Scheme is used to advance the solution
in time, and Multigrid convergence is further enhanced by using local time-stepping
and implicit residual smoothing. Details of the algorithm are presented along with a
description of Jameson’s standard Multigrid method and a new approach to formulating
the Multigrid equations. This approach utilizes a general filtering operator to derive the
coarse-mesh equations in partial differential form, and is reduced to Jameson’s
Multigrid scheme by specifying a particular discrete filter. The correct boundary
transfer operator is formulated from this filter, and forcing terms are then derived for
the coarse-mesh boundary conditions. Results are presented for inviscid channel flow
of subsonic, transonic, and supersonic speeds over a circular-arc bump, viscous flat plat
flow, viscous flow over a circular-arc bump, and inviscid and viscous flow over a VKI

gas turbine rotor blade. These results will show the importance of the correct
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implementation of the coarse-mesh boundary conditions by comparison of convergence

levels with and without the boundary forcing terms that were derived.



CHAPTER 1 - INTRODUCTION

Advances in computer technology over the past few years , coupled with the rising
cost of experimentation has resulted in the increased role of computational methods in
the design process. The improved algorithm development occurring along with these
advances has made it possible to surpass the level of approximation provided by
potential solvers. The higher order Euler and Navier-Stokes equations can now be
solved for a number of more realistic problems covering a wide range of
complexity.! ! Finite-volume, explicit time-stepping schemes have been used quite
extensively in solving these problems for both the Euler and Navier-Stokes
equations.[l"” Explicit schemes are generally favored over implicit schemes due to
their ease of implementation, minimum number of computations, and low storage
requirements. Although explicit schemes have been successful, their main disadvantage
over implicit schemes is their stability limit. Whereas an implicit scheme is by theory
unconditionally stable and therefore able to use very large time-steps, an explicit
scheme can be quite limited by the maximum allowable time-step that may be used. In
order to retain the advantages of an explicit scheme, while still reaching solutions
efficiently, a large amount of research has focused on improving the performance of

explicit time-stepping schemes.



As part of this effort, a class of hybrid Runge-Kutta time-stepping schemes was
developed by Jameson.[¢! Runge-Kutta schemes are usually chosen for their high level
of time accuracy, but in the interest of steady-state solutions, Jameson neglected time
accuracy and tuned the Runge-Kutta coefficients to provide the largest possible time
step and the best error damping characteristics. To further enhance the convergence of

steady-state solutions, three standard acceleration methods are also used:
— Local time-stepping
— Implicit residual smoothing
— Multiple-Grid and Multigrid Acceleration

The time-step for a given computational cell is proportional to its size.
Consequently, the convergence of a scheme may be severly limited by mesh geometry
rather than the actual physics of the problem if very small mesh spacings are present,
since the smallest time step is the limiting factor in global time-stepping (required for
time-accurate problems). For steady-state solutions, since time-accuracy is not
required, the solution in each cell may be marched in time by its local time-step, greatly

increasing convergence rates.

Implicit residual smoothing is a method introduced by Jameson(®! for the Euler
equations in which the stability limit (CFL number) may be increased to a large degree
by replacing the residual at each point by a implicit average based on the residuals in
the rest of the domain. This smoothing, used in conjunction with Jameson’s hybrid

Runge-Kutta schemes can increase the maximum allowable CFL number by three times



over that given by the stability limit.[®!

Multigrid is an acceleration tool first developed by Achi Brandt'%!! to increase
convergence rates for elliptic-type problems. In elliptic problems, high frequency
errors are eliminated quickly by the relaxation scheme. The limiting factor on
convergence is the low frequency errors that remain. In order to more rapidly eliminate
these low frequency errors, Brandt utilized a sequence of meshes made up of
successively larger cells. Relaxation sweeps are made on the initial, finest mesh,
effectively damping the high frequency errors (wavelengths on the order of the mesh
spacings). Then, the solution is transferred by an appropriate interpolation scheme,
called a transfer operator, to the next coarser mesh, where the relaxation sweeps are
again performed. Now, since the cells are larger, the relaxation scheme removes error
frequencies that are lower (longer wavelengths) with respect to the fine mesh solution.
When the solution is transferred back to the fine mesh, a large amount of the low
frequency errors have been eliminated by the relaxation on the coarse mesh levels. On
the coarse levels, forcing terms (source terms added to the coarse-mesh equations) are
utilized to prevent the coarse-mesh accuracy from affecting the level of accuracy of the
final fine-mesh solution. Brandt’s Multigrid scheme is labelled the Full Approximation
Storage (FAS) scheme due to the fact that the full solution from the finest mesh is

transferred to the coarser mesh levels.

The first application of this type of acceleration scheme for the hyperbolic Euler
equations was introduced by Ni.['Zl His Multiple-Grid acceleration scheme differs

from Brandt’s FAS Multigrid scheme in that only changes in the fine-mesh solution,



versus the full solution, are transferred to the coarse mesh levels.

Jameson(®! was the first to apply Brandt’s FAS Multigrid scheme to the Euler
equations, and it is this scheme upon which much of the present work is based. The
success of Multigrid acceleration for the Euler equations is based on the premise that
wave propagation, in addition to error damping, determines convergence rates. As the
problem is solved on increasingly coarser mesh levels, larger time-steps may be used,
thus propagating the errors out of the domain at a faster rate, and speeding convergence.
Used in conjunction with Jameson’s hybrid Runge-Kutta schemes, high frequency error
damping, characteristic of these schemes, is also used. The time-stepping schemes are
tailored to provide good high frequency damping characteristics, which, when applied

on the coarse mesh levels, help to eradicate the low frequency errors.

Multigrid Acceleration has proven to be a robust and reliable tool for the Euler
equations,'#3:6:12-16] yith recent advances also being made for the Navier-Stokes
cquations.m‘zol However, improvements are still required, especially for the Navier-
Stokes equations. The addition of the shear-stress terms and the high mesh stretching
which accompany these problems tend to decrease the efficiency of Multigrid. The
theory behind Multigrid for the Euler and Navier-Stokes equations has not reached as
high a level of development as it has for elliptic problems. It essentially lacks a general,

theoretical approach, and many times tends to be problem dependent.

An area which to date has not been explored to any large degree is the effect of the
coarse-mesh boundary conditions on convergence. Enforcing the boundary conditions

on the coarse-mesh levels with coarse-mesh accuracy will affect the fine-mesh solution



due to the higher truncation error on the coarse levels. For interior points, forcing terms
are added to the equations for this very reason, and it is the present hypothesis that

similar terms are required for the boundary conditions.

It is therefore the objective of this work to obtain a correct, consistent formulation
of the coarse-mesh boundary conditions and to determine the effect of these boundary
conditions on the convergence of both inviscid and viscous problems. As an initial
step in obtaining these conditions, a new, general approach to formulating the Multigrid
equations is given. The equations on the coarse mesh levels are viewed as a filtered
sub-set of the fine mesh equations, since certain information is, in effect, filtered out on
the coarse levels due to the lack of mesh resolution. In this context, a filtering operator
is first defined. The coarse mesh equations in partial differential form are then derived
by filtering the origihal partial differential equations one or more times. The
specification of a discrete filter then gives the procedure for transferring the fine-mesh
solution to the coarse mesh. The coarse-mesh equations in discrete form are
constructed through a finite-volume approximation of the filtered coarse-mesh
equations. Although this method may be used to obtain any number of coarse-mesh
discretizations based on how the filter is defined, one choice reduces the present
formulation to the standard Jameson Multigrid scheme. Further, the present analysis
leads to the correct formulation of boundary conditions on the coarse levels, without the

coarse-mesh truncation error affecting the fine-mesh solution.

The work presented in this thesis is divided into the following chapters. In Chapter

2, the governing equations are presented. The 2-dimensional Euler, and full, laminar,



Navier-Stokes equations are described along with their non-dimensionalization with
respect to freestream conditions. The equations are then given in a general, non-
orthogonal coordinate system. Chapter 3 gives the important aspects of the numerical
method. Details of the finite-volume cell-centered spatial discretization, 4-stage hybrid
Runge-Kutta time-stepping scheme, and blended 2nd and 4th difference artificial
dissipation model are described. In Chapter 4, the boundary conditions for inviscid and
viscous flow are given. Both a characteristic variable formulation and a Riemann
Invariant formulation are given for the far-field boundaries. Chapter 5 presents the
methods that are used to accelerate convergence. Jameson's Multigrid scheme is
presented, and implicit residual smoothing for 2-dimensional problems is described.
The general Multigrid formulation followed by the derivation of the boundary transfer
operator and the coarse-mesh boundary conditions is given in Chapter 6. In Chapter 7,
results are presented and discussed for inviscid channel flow over a bump for subsonic,
transonic, and supersonic speeds, flow over a viscous, flat plate, viscous subsonic
channel flow over a bump, and inviscid and viscous flow over a VKI gas turbine rotor
blade. Chapter 8 summarizes the work that was performed and presents the

conclusions that were drawn.



CHAPTER 2 - GOVERNING EQUATIONS

2.1 Navier Stokes Equations
The two-dimensional, unsteady, compressible Navier Stokes equations may be

written in conservative form as follows:

U  OF 3G _OR . 3S

— t—t—==—+ — 2.1
3 Ty T ok Ty 1)
where :
p gu ppv
- {pu — Jpu+p = uv
U=+ pv F v G ovi+ p (2.2)
E (E+plu (E+p)v
[ 0 0
Txx txy
R = =
) Tuy S Ty
UTex + VIgy — Qg UTyy + VTyy —Qy
and where, based on Stokes Hypothesis:
2 .du ov 2 .0dv odu
= —pR2=—-=— =—pR=— - — 23
Tyy = (_a_ll_+9_}’_ =—K.al =—K£
wEHFE TR TR Y Jy

with density, p, cartesian velocity components, u, v, total energy per unit volume,

E, pressure, p, temperature, T, viscosity coefficient, |, and the coefficient of



thermal conductivity, k. Pressure is defined by the equation of state for an ideal gas :

p=pRT=(y- 1) [E— %p(uz +v2)} 2.4)

where 7 is the ratio of specific heats. Assuming laminar flow, the equations are closed

by using Sutherland’s Viscosity Law relating the viscosity to the local temperature:(2!]

R

1
ClT
T+cy

(2.5)

where for air and moderate temperatures:

c; = 1.458x107° kg/(msec°’K #) ¢, =1104°K

The coefficient of thermal conductivity is expressed in terms of the local viscosity and

the Prandtl Number P, :

G 2.6)

where C, is the specific heat at constant pressure.

In this work, the governing equations are non-dimensionalized with respect to a

reference length, L, and freestream conditions, p.., V.., T, and .., .

MR S A L AL
T YL A V. L
. _ p . _ p T-_ T Et_ E . _ p.
= ——— = - — p.__
P Peo p p“Va T” pmvz° Hoo



Where * denotes non-dimensional quantities. Under this non-dimensionalization, the
Euler equations retain their original form and a constant, 1/ Re., appears before the

viscous terms in the Navier-Stokes equations.

BU‘ + BF. + BG‘ __1 ER. + as‘ 2
" ox" 9y  Rer |ox” oy
where Rey is the reference Reynolds number defined as:
P U L
Rep = — (2.8)
Moo
The non-dimensional temperature is derived from the equation of state (Eq. 2.4) :
. YMLY
T=J1=P 2.9)

P
And the non-dimensional viscosity and coefficient of thermal conductivity may be

derived as:

2 14cy/T .
. _ 2 2 oo t= ’.1
w=T [T+C2/T~ ] « P(y-)M2Z (2.10)

where T.. is a free-stream reference temperature. The equations for the non-
dimensional pressure and other thermodynamic variables remain the same as their
dimensional counterparts. For convenience, the * is dropped from the notation at this

point, and all variables can be assumed to be non-dimensional.

In order to perform computations over general mesh topologies, the above cartesian

(x,y) system of equations can be transformed to a non-orthogonal system (§.Mm)



where:

Equation (2.1) becomes:

10

E=E(x,y) nN=n(xy)

9 | &F+EG | 9 | mF+ny
el ] an J
1|3 | &R+GS 3 | R+,
Rep | 0 ] an

where J is the Jacobian of the transformation and is given by:

1
T TX YnTXn ¥g

Given the metric relationships:

]
Nx My Y& ¥

the Navier Stokes equations in general coordinates become:

Where:

XM Re

a0, 9F 3G 1[aﬁ+§§_
% " an

U=U/J

F=(&F+&,G)/J=ynF-x,G
G=(nF+n,G)J=xG - yeF
§=(§XR+§yS)/J=yﬂR—xﬂS
S=(nR+n,S)¥J=xS-yeR

|

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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CHAPTER 3 - NUMERICAL METHOD

3.1 Finite Volume Formulation
A discrete form of Eq. (2.14) is found using a control volume formulation in which
the solution values are stored at the cell centers. First, Eq. (2.14) is put into integral

form for the computational control volume, V:
p A a A A . A oA oA
—aTH\-,UdV+H\.,(F§+Gn)dV=H\.,(R§+S.,‘)dV 3.1)
Then, integration over the volume, AEAn , gives:

%Ho UdV+ [[FE+a8) -FE) 1dn + [[Gm+am-Gm)1d&=  (32)

= [[RE+48) - RE) 1 dn + [ S +an) - Sm) 1 d§

Applying the Mean Value Theorem to the control volume in Figure 3.1, F and G for
each side of the control volume may be given by their values at each particular cell face

center. Eq. (3.2) becomes:

) NN N - N -
= UdV+[Fivw j=Fiow j1AN41Gi s =G jors 188 = (3.3)

=[ﬁi+‘/z.j‘§i—‘/z.j]An+[§i.j+%"§i.j-%]A§
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i,j+%

y
i-%.,j ¢ J+- gi+e,j

4 qj-n 1

Figure 3.1. Cell Centered Control Volume Notation

Integrating the first term in Eq. (3.3) produces an ordinary derivative in time for the

solution U at each cell, (i,j):

aviy

m (34

J SRS
50 /[ UdV==-[[U(r" dean)=

i,j

where AV is the cell area, which is defined in this work by the cross-product rule as :

AV ==1/2 [ (x2 = x4)y1 = y3) = (x; = x3)(y2 — ¥4) ] (3.5)

The Jacobian of the general coordinate transformation describes the ratio of the cell
areas between the (&, n) coordinate system and the (x,y) coordinate system.
Since the cell area in the transformed computational domain is equal to 1

(AE=An=1), AV can also be defined as the inverse of the Jacobian :

1
AV = T= XE Yn = YE Xq 3.6)

The second term in Eq. (3.3) may be expressed in F and G as:

[(Fiow,j~Fiu.j1ON=[(ynF=%qG)isns.j~(ynF=xqG)i_y ;]AN= (3.7
=(FAy - GAx )i+, j — (FAy = GAX )i _y _j

Treating the remaining terms of Eq. (3.3) in the same manner produces a spatially
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discrete system of ordinary diffcrcnﬁal equations for the cell shown in Figure 3.1 :

dU

i = —:—1—'[(FAY_GAX)i+‘/&,j"(FAY"GAx)i-‘A.j+ (3.8)

AV;
+(GAx—FAy)i'j+:,‘,—(GAx—FAy)i‘j_v,«i-
- (RAYy - SAX )i+, j+(RAy - SAX )i_y j+
- (SAx—RAy); j+u% +(SAx—RAy); ;-]

where:

Axivy j=X2—X1  AYiru j=y2-V1 (3.9)
Axi'j+l,,=x2—X3 AYi.j+‘/;=y2_y3
AX;_1, j=X3 —Xg4 AYi-w%, j=Y3—VYa
AX; j-15=X| — X4 Ayi j-w=Y1-Ya

In the present work, the convective terms, Fj,; jand G, j, are obtained from the
average of the conservative variables, U, existing in the two cells adjacent to the face.
For linear problems, this is equivalent to averaging F and G. However, since F and G
are non-linear functions of U, Turkel!”! claims that averaging U instead helps to couple
the even and odd points throughout the domain. To save on the number of
computations that must be performed at each point, pressure is stored at the cell centers

and averaged to the face.

) \ ] \
(PU)i+ 14, | (PV)i+ s, j
2
[(p;) } FPiew, | [(pu:)(pv)]

i+%,j i+%,j

Fiv,j=1 r Gieu, =9 L(3-10)
1 )
P it+%,] P i+,
Ei+‘/‘z,j Ei+‘/z,j
\ P L P
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where

(p)i“,‘,.j:—;- [(p)i+l.j+(p)i.j] 3.11)
(pU)i+lA'j=% [(pu)i+1.j+(pu)i.j]
PV = = [(pv)i+1,,-+(pv)i.,-]

Bhn =5 [Brer,+® |

@hows =5 [@rer+@x; ]

Quantities at the other faces are defined in the similar manner.

The evaluation of the viscous fluxes for each cell requires that the first differences
of u,v,andT be defined at the center of each cell face. Spatial discretization of
these derivatives for the point (i+ !4, j) is performed by integrating over a surface
bounded by the two adjacent cell centers, (i,j) and (i+1,j), and the endpoints of their
(17)

dividing face,!" "' shown in Figure 3.2.

3

7/ AN
4-i< 4 > 2
N

/

1
Figure 3.2. Control Volume for Evaluation of Shear Stress Derivatives at face (i+1/2,j)

For this control volume formulation, the following relationship may be derived for any

variable, f ;
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[[,fxdv=], fdy (3.12)
[, £y dv=-], fdx
Where V and 9V are the surface area and boundary, respectively, of the control
volume in Figure 3.2. The line integrals are approximated by trapezoidal integration,

which gives a discrete representation for the first derivatives of f:

af 1

% 2AV Z(fk+1+fk)()’k+l Yk ) (3.13)
of 1

W - TAV Z(fk+1+fk)(xk+1-xk)

Where

fs=f;, x5=x; ys=y

Using this method, thé shear stress terms can be evaluated in their cartesian form
without the need for a general coordinate transformation. When evaluating these
derivatives at boundaries, such as the (i,j-1/2) face of the first interior cells, the center of
the image cell must have specified coordinates for the above finite-volume formulation.
To avoid difficulties of defining these coordinates, such as in areas of high curvature, a
different approach is utilized at the boundaries. The viscous control volume of the
(ij-1/2) face of a cell along the boundary is collapsed to a triangular volume, shown in
Figure 3.3, in which the first derivatives required at the boundary are obtained directly
by integration over the truncated control volume. This results in a 1st-order accurate
evaluation of the boundary shear stress terms, which is essentially equivalent to

performing one-sided differencing there.
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3
4 2
77N v 7777
N
N
1

Figure 3.3. Control Volume For Boundary Shear Stress Evaluation

The finite-volume, cell centered formulation for the Navier-Stokes equations
defined in this section is equivalent to a central difference scheme, and is 2nd order

accurate for sufficiently smooth meshes.(®!

3.2 Time Stepping Scheme

The time-marching algorithm used in this research is a 4-stage Runge-Kutta
scheme. Typically, multi-stage time-stepping schemes such as these are éhoscn for
their high order of time accuracy. However, since the goal of this research is steady-

state computations, time accuracy is not a requirement.

This 4-stage scheme is one of a class of hybrid multi-stage schemes all of which
were developed by Jameson!(®! specifically for their damping and stability
characteristics. The coefficients of the scheme are tailored to give the maximum
allowable time step and to provide optimum damping of the high frequency error
modes. The attenuation of these modes is essential for the success of rapid steady-state

convergence.

The semi-discrete system of ordinary differential equations in Eq. (3.3) may be
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rewritten as

du

-1
— =—[CU)+VWU)-D .
" AV[ U) U) (9))] (3.14)
Where C (U) is the convective flux,
C (U) = (FAy — GAx); + 15, j — (FAy — GAX); -, j + (3.15)

+ (GAx — FAy); | j+ 1 — (GAx — FAy);  j-u

V (U) is the viscous flux,

V(U)='(RA)’—SAX)H.1/Z'J‘+(RAy—SAx)i_1A'j - (3.16)
- (SAx - RAy); Lj+ % + (SAx — RAy)l Lj-%

and D (U) is the artificial dissipation which will be defined later in section 3.3.

The 4-stage Runge Kutta scheme used to complete the discretization of Eq. (3.11) is

implemented in the following manner :

U©® =yn 3.17)
U =u® - a{;\? : :c U®)+VU®)-D (U(O)):

U@ =y® - %ét— :c UM +vUu®-p (U(O’):

U® =y® - f‘%\ﬁ :c U?)+vu®-p (U(O)):

U = U _ a; 3‘ :C UD) +V U®) - D (Um))i

yn+! =y®

The superscripts in parentheses refer to the particular stages of the scheme, and where

o; are the coefficients designed to give optimum stability and damping to this
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scheme. (!

o=1/4 =13 a3=12 o4=1

Note that the viscous fluxes and the artificial dissipation are evaluated once and held
constant throughout the time step. Other Runge-Kutta schemes may possess better
damping characteristics or allow larger time steps, but the single evaluation of the
artificial dissipation in this 4-stage scheme produces substantial savings in

computational time.

This 4-stage Runge-Kutta scheme has been used with good success in many
steady-state  computations, $18I13I41I7N22)  5pq g high frequency damping

characteristics make it ideal when used in conjunction with multigrid acceleration. 6!

3.2.1 Stability Criteria

Turkel!”) derives the stability limit for the Euler Equations based on the maximum
eigenvalues of the convective Jacobian matrices. Ignoring the effect of artificial
dissipation on the equations, the maximum allowable time step for a general, multi-

stage scheme is given there as :

AV (CFL
Ats VL) — (3.18)
luyn = vxq | + [ vxg — uye | +(Xg +Yg +Xn +yq +2|xeXn +yeyn )2
An approximation of which is :
A av (CFL) (3.19)

Where a is the speed of sound, AV is the cell area, and CFL is the Courant number for
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stability based on a Fourier analysis of the 1-D model equation :

u +uy + LLAXSU““ =0 (3.20)

Ag and Ay are the maximum local wave-speeds in the §&andmn directions,

respectively, and are defined as :

Ag = [luyq = VXq | +a\jy:‘ + %7 } (3.21)
M = [|vx§ —uygl +a‘\/y2 +xE]

The maximum CFL number that may be used is dependent on the type of hybrid
Runge-Kutta scheme that is used. Factors affecting this stability condition are the
Runge-Kutta coefficients, a;, the number of evaluations of the artificial dissipation, the
number of Runge-Kutta stages, and the amount of smoothing, 4 . The maximum CFL
number for an m-stage scheme in which the coefficients are optimized for the largest

time step ist®l .

CFL <m-1 (3.22)
For the present 4-stage scheme with a single evaluation of the artificial dissipation, Eq.
(3.17), with p = 1/32, gives the condition :

CFL <26 (3.23)

For the Navier Stokes equations, diffusive effects must be considered in the stability
analysis as well as the convective effects. In Reference [18], the Navier-Stokes time

step is given as :
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At Aty
(3.24)

At=CFL[——Atc+Atv

where At is the convective time step given in Eq. (3.15), and At, is the viscous time

step :

AV

At =K,
Av

(3.25)

K, is a specified empirical constant that weights the importance of the viscous terms
over the convective terms and is given as 0.25.181 A, is the sum of the maximum

spectral radii in the §andn directions of the viscous operator in the Navier-Stokes

equations :
A=k, + Ay (3.26)
Where
1 [y,
= Al° + —AlAm
M= Reav | Bp 3 J 62D

;"v,‘ Re AV P, P 3p

=1 TH Am2+LAlAmJ

and where Aland Am are the lengths of the cell in the &andm directions,

respectively:

A= Vx +yi (3.28)
Am = \]x:\ + y;
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For the viscous cases considered in the present work, the maximum CFL number
used with the above viscous time step criteria was approximately the same as those for

the inviscid cases.

3.3 Artificial Dissipation

Central difference schemes require the addition of artificial dissipation to damp the
high frequency error modes that occur as a result of the odd-even point decoupling.
Artificial dissipation is also required for shock capturing and to damp oscillations in
other high pressure gradient regions, such as stagnation points. Even though the
viscous terms in the Navier-Stokes equations provide physical dissipation and would be
capable of resolving the structure of a shock, mesh spacing in the region would need to
be on the order of the molecular mean-free-path. This is not practical from a
computational standpoint, and therefore artificial dissipation is still required to capture
shocks. Also, artificial dissipation is required to damp instabilities that may occur in

regions dominated by the convective terms.

In the present work, the dissipation model is based on that introduced by Jameson,
Schmidt, and Turkel.! It employs modifications by Swanson and Turkel,?? and
Martinelli,(®! to improve accuracy and to increase convergence rates for viscous
solutions. It is a blended 2nd and 4th difference adaptive dissipation scheme that
provides a base level of 3rd order dissipation throughout smooth regions of the flow,
and decreases to lst order in the vicinity of shocks and other high pressure gradient

regions.
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The conservative form of the equations is maintained by evaluating the dissipation
at each cell center by summing the dissipative fluxes in each coordinate direction. The

basic form of the dissipation, D; ;, for each cell is:

= [dg-dg+d; —d;]ui,j (3.29)

Where U, j is the vector containing the conservative variables, and d2 and d* are

the 2nd and 4th adaptive difference operators. For cell i,j, shown in Figure 3.1, these

are defined as :

d§U=v§{ Ris.j Einw, ,]Agui'j} (3.30)
dEU=V¢{ iv.j Eirn, ,]AgvaﬂgUi‘j}

2
dnU=Vq{ xl j+% El J+A] Anulvl}

dnu=vn{[ i,j+% 81 j+% AﬂVﬂAﬂUi-j}

Where A and V are the standard forward and backward finite differences,

respectively.

A§U=Ui+1_)'—Ui'j V§U=Ui'j—Ui_1‘j 3.31)
AU=U; j+1-U; j VaU=U, ;-Uy -

iy ,j and A ,j+w are local variable scaling factors averaged to the cell face
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Aicw,j

[Xi+1.j+xi.j] (3.32)
[Xi.j+1+xi.j]

S

Xi,j+%

In the original model,
AV
A= —s (3.33)
YA
where At® is the inviscid time step due to a unit CFL number, or,
Aij=(g) + O | (3.34)

where Ar and Ay are the maximum local wave-speeds in the & and 7 directions
defined in Eq. (3.21). The adaptive coefficients, € ® and € ® control the blending

of the 2nd and 4th differences in the dissipative operator :

)] (2)
Ei+n, ;=K max [Vi-l.jvvi,j,vin,j]F’ (3.35)

) @ [¢2]
EHVZ.J-:max{O, [K —Ei+’/z.j]}

) (¢3)
ei,j+‘/z=K max [Vi‘j—lyvi,j,vi,j+])
n

4) @) 2
Ei'j“/,:max{O, [K —Ei‘j.,.l/,]}

Where v is the norm of the centered 2nd difference of pressure used to locate large

pressure gradients and turn on the second difference dissipation.
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Piv1,j=2P j+Pi_ ;

(Vije= Pis1, j+2P j+Pi_y (3:36)
(Vi )= Pij+1=2Pi j+P; j_4
tm- Pi.j+l+2Pi,j+Pi.j—1

When the second differences are strong, the fourth differences are turned off by e’ to
sharply resolve shocks. K” and K~ are user specified constants which typically hold

values of:

The values that are used are based on the best convergence rate that may be obtained
(highest possible K”) while still maintaining accurate solutions, and on the ability to

cleanly capture shocks without too much smearing (Km).

The difference operators in Eq. (3.19) are applied in two steps. A sweep is made
through the domain in the & direction, taking centered first differences of U at each
cell face for d?, and 3rd differences at each face for d* . Then another sweep is made,
taking centered differences of the 1st and 3rd differences, yielding the desired 2nd and
4th differences, respectively, at cell centers. The same procedure is repeated in the 7

direction.

3.3.1 Modifications
Based on an analysis of Eq. (3.25), Swanson and Turkel'??! determined that the 4th

difference operator produces dispersion as well as the required dissipation. If the 4th
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differences are applied-as a sequence of two 2nd differences instead of a 1st and a 3rd

difference, the operator d* will produce only dissipative terms.

o= [os8){[f o] e v o

4 4)
Dy U= [Vn An] {[Xi.j Ei.j] Vi &n Ui.j}
Note that € and A are now evaluated at the cell centers, not at the faces.

The second area of modification is in the evaluation of the variable scaling factor,
X . In viscous calculations, severe mesh stretching can result from the need to resolve
the boundary layer. Cell aspect ratios may vary from Al/Am>1 near a solid;_
boundary, to 1 in the far-field. This large variation slows convergence, and diminishes -
the accuracy of steady state solutions. Also, these problems increase in magnitude for
multigrid calculations due to the large difference of the high-frequency modes in the

two coordinate directions.[22!

To overcome these difficulties, a new A based on cell aspect ratio was introduced
by Martinellif?®! It is essentially a combination of the scaling factor in the original
model with an anisotropic scaling factor suggested by some researchers.!3## In the

€ direction,

A ] (3.38)

(Xi,j)§=k§ {1+—k—§-

And in the N direction,



(A j)y =2n [Hx—ﬂ' ] (3.39)
Where

0<ac<l (3.40)

If @ is 1, then A reduces to the scaling in the original dissipation model given in Eq.
(3.30). If a is 0, A reduces to scaling in one direction only at each given face. This
scaling is not recommended as it may decrease convergence rates and create problems

for multigrid applications!??]. A value of a that has produced good results(22M18] jg

a=2/3

For the cases in the present work, solution convergence did not seem to change

significantly with changing o .

In the present cell-centered scheme, image cells are included around the physical
domain to allow the same algorithm to be used for all interior cells. In order to
determine the 4th difference dissipation terms in cells adjacent to boundaries as in

Figure 3.4, 2nd differences must be given at the image cells.

(VAVAU), = (VAU); - 2(VAU), + (VAU), (3.41)

Where V and A are the difference operators given in Eq. (3.27), and where :

(VAU), = U, =2U, + Uy (3.42)
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Figure 3.4. Cell Notation for Boundary Dissipative Flux

Since these differences can not actually be calculated ( Uy is not defined) they must be
assigned in a manner that maintains conservation form and doesn’t introduce instability

at the boundaries.

Swanson and Turkel!??! provide a detailed analysis of various treatments of these
terms near boundaries. For far-field boundaries, the standard approach is to set the 2nd
differences in the image cells to zero.

(VAU), =0 (3.43)

A typical treatment at solid boundaries is to set the surface dissipative flux to zero

(VAU), = (VAU), (3.44)

and then either :

1) (VAU), =0 (3.45)
or

2) (VAVAU); =0
(VAU); = (VAU); =0

Option 2 results in zero dissipation normal to the boundary for the first two interior

cells, 2 and 3.



In the present work, both methods were used with equal success, and without

noticeable differences in the results.
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CHAPTER 4 - BOUNDARY CONDITIONS

4.1 Inflow/Outflow Boundaries

For the channel flow cases, where the outflow conditions are essentially freestream,
a characteristic formulation of the boundary conditions is used. For the turbine cascade
case, in order to explicitly satisfy constant total temperature, total pressure, and flow
angle, a Riemann Invariant formulation is used at the upstream boundary, while a

characteristic formulation is retained at the outflow boundary.

4.1.1 Characteristic Formulation

This approach utilizes a transformed system of equations in which the boundary
cells are updated by specified and extrapolated characteristic variables. Rewriting the
Euler equations in a local coordinate frame that is normal and tangential to the

boundary gives :

53U 9F 3G _
-a—t+§[-‘|-+—as—_0 4.1)

Where n and s denote the normal and tangential directions. At these boundaries, it is
assumed that variations of the flow conditions in the tangential direction are negligible,

and so Eq. (4.1) can be written as :
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U . oF _
ﬁ-+—n—0 4.2)

The above one-dimensional system of coupled differential equations can be linearized

and transformed to an uncoupled linear system of partial differential equations:

_Q_\l.;-),aw—

—=0 43
ot on (4.3)
where W is the vector of characteristic variables, and A is the diagonal matrix of
eigenvalues. Denoting q, and g as the normal and tangential velocities at the

boundary, where the normal is pointing into the solution domain, A and W are defined

as:

r _2 b
w0 0 o0 p'c{’/a
loa 0 o _ S
A= 0 0 qpea 0 Wl WD (am+pipa) @4
0 2 1/ \2)(~an +p/P 2 ),

The barred terms represent variables evaluated at the linearized state, which in this

work are taken as the values from the previous Runge-Kutta stage.

Along the characteristics defined by slope dt/dn =1/}, W; is constant and Eq.
(4.3) reduces to an ordinary differential equation. If the slope of the characteristic,
1/ A, is such that it originates from outside the computational domain, W; must be
specified. If the characteristic originates from within the computational domain, the
value of W; at the boundary for the new time level, t+ At is found by tracing the
characteristic back to its intersection point with the previous time level, t. Evaluating

W; at this intersection point will give the new value of W; since W, is constant along
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these characteristic lines defined by dt/dn=1/A;. However, in steady-state
computations, it is common practice to approximate the value of W; which lies along

the characteristic by the value contained in the first interior cell (Figure 4.1).

Approximate
n

Figure 4.1. Approximation To W; For The Characteristics Originating Within The
Domain

The boundary conditions are enforced at the boundary, or cell face, instead of the image
cell (Figure 4.2) to accommodate a consistent formulation of the boundary forcing
terms that will be given later in Chapter 6. The conservation variable in the image cells

are then updated by linear extrapolation from the interior as:

U =2Uy - U, (4.5)

SA\N

pANN

Figure 4.2. Boundary Cell Notation

For subsonic inflow, and an inward pointing normal, n, A, A;,andA; are
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positive, meaning the characteristics originate from outside the domain (see Figure 4.3).
Therefore, W , W, , and W3 must be specified, and W, must be extrapolated from

the interior. The following equations result:

P
Pb—g;—=l3a.——_z- (4.6)
a a

where the subscripts b, e, and ex refer to the boundary, freestream, and extrapolated
values, respectively. Solving Eq. (4.6) for the primative variables at the boundary

gives:

Qs, =9Qs.. 4.7)
pb=—21-[pex+p~+5§(q,._—qn,, )]

Pb = Pee + (Pb — Pee )/52

Gn, =Gn. +(Pu—Pv )/ pa

For subsonic outflow, with an inward pointing normal, n, only A3 is positive
(Figure 4.3), and so W3 is the only characteristic variable that must be specified.

Following the same procedure as above, the updated values are given by :
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Qs, = Qs,, (4.8)
1 ——
Pb=E[Pout+Pex+pa(Qnm‘qml )]
2
Pb=Pex + (Pb —Pex /2

Qn, =qn, + (Pb — Pex )/53_
where the subscript out refers to the exit conditions.

For the inviscid channel flow cases, poy and q,  are assumed to be at freestream
conditions. For viscous problems, where the boundary layer (or viscous wake)
intersects the outflow boundary, the characteristic relations are incorrect due to the
non-isentropic conditions existing there. For these cases, the exit pressure is specified

and the other variable are extrapolated.

For supersonic inflow, all four A; are positive (Figure 4.3), and therefore all four
W, must be specified, which reduces to specifying the primative variables:
Qs, =Gs.. (4.9)
Pb =P=

Pb = Pee
qn, = Yn.

For supersonic outflow (Figure 4.3), all A; are negative, and so all W; must be

extrapolated:
Qs, = Qex (4.10)
Pb = Pex
Pb = Pex

Qn, = dn,,
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Subsonic Outflow

-

Subsonic Inflow

Q.+ 2 Gn Q-2 q.-a G 9n+2
n n
t
Supersonic Inflow Supersonic Qutflow
qn+a q,-{a . Q-2 Q. Ha
n n

Figure 4.3. Characteristics At Far-Field Boundaries

4.1.2 Riemann Invariant Formulation
In this formulation, an upstream-running Riemann invariant is used in conjunction

with specified total pressure, total temperature, and flow angle to solve for the updated

inlet conditions.’>) The Riemann invariant, R™, is based on total velocity, Q, and is

approximated by extrapolation from the first interior cell :

_ 2a,
R =Q,3,‘-Y_‘1 (4.11)
Where a is the local speed of sound
P *
y
as= |— 4.12)

Computing R™ in this fashion represents extrapolation along streamlines versus normal

to the boundary. Based on isentropic relations and the specified total temperature at the
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inlet, T,_ , the inlet speed of sound can also be given by :

4
-1
ay = (v—l)cpTo_—Q%<7—2—> 4.13)

Where C, is the non-dimensional specific heat

1

=— 4.14
G MZ (y-1) (@19

and Q, is the unknown inlet total velocity. Using Eq. (4.12) and Eq. (4.14), a
quadratic in- Q, results. Being an inflow boundary, the negative root is non-physical,

and therefore Q, is given by the positive root:

(Y- R + [4(v+ 1)C,To, - 2(¥—1 X R )2]

Q= (4.15)

Y+ 1

Pressure and density at the inlet are then calculated using isentropic relations and the

specified inlet total pressure :

=Y/ (y-1)

2
_ (-1 | D
Po=Po. | l+—— [ab] (4.16)
Pb v
Pb = Po., K

The cartesian velocity components are then given by Qp, and the specified inlet flow

angle, By :
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u=Qucosf (4.17)

v =Qysinf,
At the outflow, the characteristic formulation (section 4.1.1) is used with a specified
exit pressure. The exit pressure in the turbine case is hased on a given exit isentropic

mach number Moul“ , assuming that p,  =p,_

-/(y-1)
-1
Pout = Po,, [1+ (Yz )Moutuz } (4.18)

4.2 Solid Wall Boundaries
For a solid wall in viscous flow, the physical boundary conditions required to close
the system of governing equations are zero velocity and either specified surface

temperature or heat flux:

Q=0 (4.19)
dT dT
T=Twall or —= [—J
an on wall
where Q is the total velocity and n is the normal to the surface. The physical boundary

conditions required for inviscid flow is flow tangency at the surface (zero flux through

the surface):

Q=0 (4.20)
For a numerical scheme, however, other boundary conditions are required to close the
discrete equations, and these must be specified in a manner consistent with the physics
that are occurring at the boundaries. The implementation of these numerical boundary

conditions at a solid wall is given below for inviscid and viscous surfaces.



For a cell-centered, finite volume scheme, the only contribution to the momentum
equations at a solid wall is the pressure. The pressure may be obtained by extrapolation

from the interior based on the pressure derivative normal to the boundary!®!:

(xan+khﬂ§%+PUmu—MVXng—y&U)

op
— 4.21)
on ( x;, + yé )
giving
dp
=Dy — —— (4.22)
Pv=P2 o

Where the subscript b denotes the boundary point and the subscript 2 denotes the first
interior cell as before (Figure 4.2). For inviscid flow, flow tangency is specified by

setting

Gn, =0 (4.23)

qu = qS—l

where q, and g; are the normal and tangential velocity components. Density is
obtained by isentropic relations based on the assumption that the entropy gradient

normal to the boundary is zero:

Pb Y
Pb = P2 [ — } (4.24)
P2

For the viscous cases, the normal pressure derivative at the boundary is assumed to be

zero in the present work. A no-slip condition is specified for the velocity :
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Qn, =0 (4.25)
qs, = 0

and a specified wall temperature, Tg, is used to define the density :

YMZ py
Pb = T (4.26)
For the flat plate problem, an adiabatic surface is specified:
" b

For the viscous bump and turbine problems, the temperature at the boundary is set equal

to the freestream total temperature:

T, =T, (4.28)



CHAPTER 5 - CONVERGENCE ACCELERATION

§.1 Multigrid Method

Multigrid was developed by Brandt (10111} 15 increase convergence rates for the
solution of steady, elliptic-type problems, and was later applied to the Euler equations
by Jameson..m Jameson used Multigrid directly with his hybrid Runge-Kutta schemes
on all mesh levels, solving the same fine-mesh equations with the addition of forcing
terms to maintain fine-mesh accuracy. In this chapter, a brief discussion of Brandt's
FAS scheme for steady problems will be given. Then his notation will be used to
describe Jameson’s procedure for applying Multigrid to the time-dependent Euler

equations.

A general, non-linear steady equation is given in Brandt’s notation as :

I—‘h Uh=Fh (51)

where h denotes relative mesh spacing, L is the discrete spatial operator, and F is a
forcing term which is usually zero on the finest mesh level. The corresponding

coarse-grid equation is :

LUz =Fon (5.2)

where the forcing term is based on the transferred fine-mesh residual (Fnh — Ly Up):
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Fan = I§" (Fy = LyUy ) + Ly, (12U ) (5.3)

I is the fine-to-coarse transfer operator (interpolation scheme). Changes in the

solution are transferred back to the fine mesh to update the solution :

Un,. =Up, + 1% AUy, (5.4)

where

AUzh = U2h - I}Z,hUh“ (55)

and where I8, is the coarse-to-fine transfer operator. This transfer introduces high
frequency errors into the solution on the fine grid, and therefore, it is important that the
relaxation scheme (or time-stepping algorithm for unsteady equations) possess good

high- frequency damping characteristics.(!3!

For the unsteady Navier-Stokes equations using Runge-Kutta time-stepping,

Jameson’s Multigrid equations are of the form:
Uzn = U - 0At( Loy U~ Fap ) (5.6)

where the coarse-mesh forcing term is :

(O]

Fan = I (Fy — LUy ) +Low (IR'UY )

with F, =0. The quantities in parentheses refer to the stage of the Runge-Kutta

scheme, and L represents the discrete spatial operator given in Eq. (3.11) :

LowUan = ﬁ [C(UZ}\) + V(Uzp) — D(Uyy) ] (5.7)

The forcing term, formulated in the above fashion, is necessary in order that the fine-
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mesh solution will not be affected by the coarse-mesh truncation error. If the fine mesh
converges (Fy —LyUy =0), the coarse mesh converges also. Looking at the Ist

Runge-Kutta stage on the coarse mesh:

[S)] (0

USh = U — oAt LoynUzh — Fan ) (5.8)
= U — aAf Ly Uy — I3 (Fy = LyUp ) = Lan(13UL) ]
(0)

=Up - aAt] —I& (F, -LyUy ) ]

(V]

=Up

Or, in other words, dU/ ot =0 on the coarse mesh.

For Jameson’s cell-centered scheme, the transfer operator I#" is a volume
weighted average over the 4 fine-mesh cells that make up a given coarse-mesh cell

(Figure 5.1).

Figure 5.1. Fine-to-coarse Transfer

The transfer of the solution and the residual from the fine mesh are therefore given as:
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Solution transfer:

4
2 Un AV,
=l

Uy = (5.9)
2 AVy,

1=1

Residual transfer:

4
Y AV, AV, [C(Uh)+V(Uh)-D(Uh)]
1=1
I Fp - LyUy 1 = . — (5.10)
AV,
Z
4
E Flux; ) .
= ———— = Y Residual;
3 AV, =1

=1
This residual transfer approximates the integral equations on the coarse mesh cell

(2A&An) with fine mesh accuracy, and maintains their conservative property.

Bi-linear interpolation is used to transfer the coarse mesh solution changes back to

the fine mesh (Figure 5.2) :

9 3 1
AUi.j=l—6‘AUl+1—6'[AU2+AU4]+—1€AU3 (5.11)
AU'H.I'J' 0 AU2+ [AU1+AU3]+—AU4

16 16

9 AU4+ [AU1+AU3]+—AU2

AU; 4= I3

AUi+I.j+l —T96—AU3+——[AU4+AU2]+—6AU1



Where the subscripts i,j denote the indices for the fine-mesh cells and 1-4 denote the

coarse-mesh cells, and where AU is the coarse-mesh solution change given in Eq. (5.5).

4 3

ij+l [i+l g+l
I + + l
+ +
i, i+1j
1 2

Figure 5.2. Coarse-to-fine Transfer

The cycling process employed in this work is referred to as a simple Saw-Tooth
cycle (Figure 5.3). One Runge-Kutta integration is performed on each mesh level until
the coarsest mesh is reached, and then the solution changes are transferred back to the
finest mesh without any integration steps being performed on the way down. This may
not be the optimum cycling strategy, but it has been found to be computationally

efficient for a number of flow calculations. 611131 (7] (26]



Grid Level

® Runge-Kutta integration

—  Fine-to-coarse transfer (I;z,h)

—  Coarse-to-fine transfer (I%h)

Figure 5.3. Saw-Tooth Multigrid Procedure

5.2 Implicit Residual Smoothing

The concept of implicit residual smoothing for Runge-Kutta schemes was
introduced by Jameson!®! to permit the use of larger time steps and therefore increase
steady-state convergence rates. The residuals at each point, R;;, are replaced by

smoothed residuals, ﬁi' j by implicitly solving the equation:
Ri,j=Ri j+€(VeAe)R; j +€ (VqAnR; (5.12)
where V and A are the first forward and first backward differences, respectively, that

were defined in Chapter 3, and € and €  are smoothing coefficients in each coordinate

direction. This could be thought of as solving the partial differential equation:
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9°R € | °R
—a'gT +A—[ W (5.13)

which is similar in form to the 2-D Heat Equation, and possesses the same properties.

®_E
ot At

This equation (Eq. 5.13) therefore has the effect of smoothing the residual at each point
based on all the residuals in the entire domain. The global influence on each residual is
determined by &, a "diffusivity” term. Discretized implicitly, Eq. (5.13) is the same as
Eq. (5.12). Rearranging Eq. (5.12) gives:
(1-€VeAg —€ VaAq R ;=R | (5.14)
of which a factored approximation is :
(1-¢VeAg )1 —€ VnAn R; j=Ri (5.15)
In the present work, Eq. (5.15) is applied as a combination of one-dimensional
smoothing steps :
(1-€VeAs )R] j=R; | (5.16)
(1-€ VqAg R j=R{
Where R™ are the intermediate smoothed residuals after the sweep in the § direction.

Neglecting the effect of artificial dissipation, Jameson!® showed that stability can

be maintained for any CFL number so long as € satisfies the requirement :

1
2 — 517
€2 (5.17)

(CFL")?

(CFLY _ 1}

where CFL' is the stability limit for the unsmoothed scheme. However, using CFL
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numbers that are too large may severely decrease high frequency error damping and
reduce convergence rates.”) Also, with non-linear equations containing artificial
dissipation, other factors may enter in and create instabilities. Jameson(®! suggests that

optimum convergence rates are usually obtained for

CFL = 3(CFL") (5.18)

For even-stage hybrid Runge-Kutta schemes, stability is maintained when the
smoothing is applied during every even-numbered stage, while for an odd-stage

scheme, it is applied during odd-numbered stages.

Locally varying € and €, may be used at each point to optimize the smoothing for
highly stretched meshes.!'®11%1 However, in this work, good results were obtained by

using constant coefficient values of : g, =€ =20
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CHAPTER 6 - MULTIGRID BOUNDARY CONDITION FORMULATION

In Multigrid applications, a topic that has received little attention is the effect of the
coarse-mesh boundary conditions and boundary transfer operators on the accuracy and
convergence of the solution. In fact, the procedure for dealing with these issues is
rarely mentioned, and if so, not in a very detailed fashion. Merely enforcing the fine-
mesh boundary conditions on the coarse mesh levels will introduce coarse-mesh
truncation error into the fine-mesh solution. Therefore, a consistent formulation is

required for the boundary conditions just as it is for the interior Multigrid equations.

In this section a new way of viewing the Multigrid acceleration process will be
introduced in order to derive a general approach to obtaining the coarse-mesh Multigrid
equations. This, in turn, will lead to a consistent formulation of the coarse-mesh
boundary conditions. Rather than formulating the Multigrid acceleration scheme
directly from the discrete problem, the governing partial differential equations used in
the Multigrid acceleration scheme will first be constructed. This is accomplished by
introducing a filter operator which is applied one or more times to the original system
of partial differential equations. The resulting series of filtered partial differential
equations may then be discretized leading to a consistent series of coarse mesh
equations to be solved in the Multigrid acceleration scheme. This approach is

motivated by the observation that both the coarse mesh solutions and the coarse mesh
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discrete equations solved in a Multigrid acceleration scheme are in fact filtered
approximations to the corresponding fine mesh solution and discrete equations,
although they are rarely viewed in this manner. The advantage of the present approach
is that the filtering process is clearly defined through the choice of the filter operator.
Further, since in the present formulation a general filter is initially assumed, a wide
class of different multigrid discrete formulations are possible by simply changing the
actual filter that is used. Finally, through a clear definition of the filtering process
between mesh levels, the proper formulation of the corresponding coarse mesh

boundary conditions follows directly.

In the discussion which follows the filtered form of the governing equations will be
derived through the introduction of a general filter operator. It will then be shown that
with one possible choice of this filter the corresponding discrete equations reduce to the
FAS Multi-grid scheme proposed by Jameson. The remainder of this chapter will then
center on the proper formulation of Multigrid boundary conditions, with special

attention directed toward boundary conditions for Jameson’s Multi-grid scheme.

6.1 Filtered Partial Differential Equations
The Euler and Navier-Stokes equations may be written in the following general
form for a non-orthogonal coordinate system:

L LB
% " am

9
ot

U

-J— =S (61)

Where F and G represent the combined convective and viscous terms, and where S is a
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source term, which is zero for the unfiltered equations. Consider a general spatial filter

operator defined as follows:

1

LH=1f¢En)= m

where :

H(E,n) =1 inside the domain
=( outside the domain

W(,n) = Weighting Function

and :

MEm= [ [ HEM WEEA-n) d&dn
Apply this filter to Eq. (6.1),

oF  9G
.+.

. *E T

5[]

d U
xT)

The first term may be integrated as:

[ [FERHERD WE-&n-n) dan

(6.2)

(6.3)

(6.4)

(6.5)
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L [ 2 gy [ 20O HED WELATD R 66)

ot

Q
-

it(m%[g_g%}u& 67)

The goal is now to formulate a discrete approximation to this equation which will be

solved on the first coarse mesh level. Unfortunately, the present equation gives a time-

dependent equation for J™'U and not the filtered solution U . It is important to note

that in general J-'U = ! G— Therefore, we will now define the following "average"

solution, U:

<
=}

(6.8)

(@]
n
'I

=
L

In terms of U eq. (6.7) may be written as:

— [ JF aoJ 69)

d I
—_ U)= -_ -
at(J )=L|S E

In order to put Eq. (6.9) into the same form as the original equation, Eq. (6.1), we define

filtered approximations to f’g and én as follows:



Fe=F0)x  Gn=G(0)y (6.10)

Then adding these filtered spatial derivatives to each side of Eq. (6.9), the filtered

equation takes on the same form as the original governing equations (Eq. (6.1)):

oF

U)+ &
( ) §

aG =
= =5 6.11)
an

where

§.p|g 9 _9G |, 9, aG
TETm |T®T

Note that the source term which appears in the filtered equation can not be simplified

any further since:

oF(U) | 9F) 612
L__ag *—ag (6.12)
3Gy |, aGM)
L #
Lo om

because Fand G are non-linear functions of U and the metrics of the coordinate

transformation, and U=zU.

If we define a discrete approximation to the filter operator (i.e., the fine to coarse
mesh transfer operator in Multi-grid terminology), Eq. (6.11) is the differential equation
which corresponds to the coarse mesh discrete equation solved in Multigrid
acceleration schemes To illustrate this point consider the following discrete filter
operator. Assume a uniform mesh in computational space with AE=An=1 and a

weighting function, W, defined as having unit influence over the four fine-mesh cells
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surrounding a given mesh point, and zero influence elsewhere (Figure 6.1):

WE-En-m=1if -1<E-E<land -1<N-n<1
=0 if |E-E|>1or |M-7MI>1

n-n
F' S
+1
4 3
+ +
> &%
1 +1
1t M)
-1

Figure 6.1. Weighting Function Description

The corresponding "average" solution, U, is defined as:

U _ Loy

U="—
T LA™

Inside the domain (H = 1), with W as defined above:

1 11

[ rudEan = 1 [ Jua dgam=
21 A -1-1

AV, U,

!
1

[

lu=1Lg'u)=

>~
Me Le—e—m ~

1

>| -

It

(6.13)

(6.14)

1
_[ Udv  (6.15)
g

In the last step we have used the mean-value theorem with U; being the cell centered
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value of the solution on the fine mesh. In a similar fashion :

11
mary 1 S|
o1 )= — I dEdm) = — T AV, :
Fl=1g™ l.j,-l( B = 5- T AV, (6.16)
and U is therefore given as:
4
Y AV;U;
U= = Uy = IU, (6.17)
Y AV,

1=1

The "average” solution U is exactly the same as the transferred solution, U2h, used in

Jameson’s FAS Multi-grid formulation (see Eq. (5.9) ). Similarly:

A 11 . -
JdF oG 1 JF dG o
Llg_9F_9oG _1 §-9F _ 90 | 4Eg (6.18)
[ % om kl“ % an]z"
=41 f:(FluX)i

Z AV, 1=
i=l

= I (Fy - LyUp)
Which is the same as the transferred fine mesh residual as defined by Jameson (see Eq.

(5.10)).

In summary, Eq. (6.11) is the differential counterpart to the discrete coarse mesh
equations used in Multi-grid acceleration schemes. Expressed in this form, there is a
direct relationship between the filter operator and the resulting filtered governing
equations. While the present discussion details a single application of the filtering

process, if the process is repeated, filtering over increasing length scales, higher and
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higher levels of the filtered equation can be formulated. Further, each level can be cast
in the same form as that of eq. (6.11). From each new level of filtered equation the
corresponding discrete coarse mesh Multigrid equation can be determined. Based on
this general derivation, it is clear that Jameson’s Multi-grid acceleration scheme is one
of a large number of Multi-grid formulations which can be constructed from these

equations.

6.2 Coarse-Grid Boundary Conditions

The boundary conditions on the coarse mesh levels are applied at the cell faces, in
the same manner as the fine-mesh boundary conditions, with the addition of forcing
terms to allow them to be solved with fine-mesh accuracy. These boundary forcing
terms will be derived in a similar fashion to the interior forcing terms, using the above
general Multigrid approach to determine the correct way to transfer the boundary values

to the coarse-meshes.

At a boundary, as in Figure 6.2, the function H is zero for the image cells and 1 for
the interior cells. The weighting function, W, is the same function as for the interior,

given in Eq. (6.12).
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Figure 6.2. Coarse-Mesh Boundary Transfer Notation

Applying the filter, I, to the fine-mesh cells adjacent to the boundary, and integrating
as before, the transferred boundary value on the coarse mesh, Uy, is defined as:

2

2 AVil;
Up = ——— (6.19)

2
¥ AV,

1=l

The coarse-mesh boundary conditions are now formulated in terms of the transferred

solution using the same discrete Multigrid equations as for the interior points:
LonUp = Fon = If*(Fp — LyUn) + Lon(13"Up) (6.20)

Since the boundary conditions on each level are satisfied exactly, the quantity,

1#(F, - LyUy) is always zero, and therefore, the forcing termis :

Fap, = Lan( 12"Uy) (6.21)

which is a function of the transferred boundary value, Uy, and the transferred interior

solution at point 2c (Figure 6.2). As an example, take the inviscid flow tangency
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condition:

s, =G, 5 Gn, =0 (6.22)
For the tangential velocity, qs,. the boundary condition on the fine mesh in Multigrid

notation is:

LhUh = Fh (623)

where

LhUh = qu - qsk
Fh =0

For the coarse mesh levels:

Loy Uap = Fyy, (6.24)

where

LanUan =( s, Y- Qs,, ® )2h
© ©
Fon = 9s, —Qs,

and where the quantities in parentheses denote the Runge-Kutta stage, with zero
representing the initially transferred quantities. The updated boundary value at each
Runge-Kutta stage is therefore given as:

(k;

)
qS\, = qu‘

(k (]

TR N (6.25)
The conservation variables in the image cells are then updated by linear extrapolation
from the interior based on the updated value of fJb:

Use =20 - Uy (6.26)

For the Navier-Stokes equations, the forcing term at a solid wall essentially adds a
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partial slip condition as the mesh becomes too coarse to fully resolve the boundary
layer. In the limit, as the mesh becomes very coarse, this is equivalent to applying the

full inviscid slip condition at the wall.
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CHAPTER 7 - RESULTS

The numerical algorithm described in the previous sections has been applied to a
variety of both inviscid and viscous 2-D flow computations in order to determine the
effect of the Multigrid boundary conditions on convergence. Solutions in each case are
given to validate the accuracy of the present code, and then convergence histories for
applications with and without the coarse-mesh boundary forcing terms are shown. It is
stressed here that all Multigrid and single-grid solutions were the same. References to
forcing terms refer to those implemented in the boundary cells (Chapter 6) and should
not be confused with the forcing terms for the interior points given in chapter 5. The
number of grids specified refers to the number of mesh levels used in the Multigrid

calculation, with 1 being the finest mesh.

Convergence is measured in terms of the average residuals of the conservation
variables which have been normalized at each point by the local time-step. One
Multigrid Cycle is defined as a complete sequencing through all mesh levels to the
coarsest mesh and then back to the finest mesh again. For single-grid solutions, this is

the same as one time-step, or one iteration.

Computations were performed on a Gould NP-1 mainframe computer, and on an
Ardent Titan graphics workstation. CPU times on the Titan with a vectorized code

were equivalent to those on the NP-1 with an unvectorized version. All CPU times are
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given in minutes.

7.1 Inviscid Channel Flow

Initial code validation was performed for subsonic, transonic, and supersonic flow
in a channel with a circular-arc bump on the lower wall. This is a fairly common
problem, used in other works as an initial validation tool. 123NN A 129x33
algebraically stretched mesh is used for all 3 cases with minimum increments :
Ax = Ay = .015625. The subsonic and transonic cases use a 10% bump, and the
supersonic case uses a 4% bump, both of which are shown in Figure 7.1. The channel

is 3 chords long and 1 chord high.

7.1.1 Subsonic Case

Figure 7.2 shows the solutions obtained for the M., =.5 case. The spikes in the
total pressure loss at the leading and trailing edge (Figure 7.2b) are due to the artificial
dissipation in the numerical scheme activated by the stagnation point pressure
gradients, and to the discontinuity in the grid metrics there. The trailing edge pressure

loss is convected downstream and slightly affects the symmetry of the solution.

Figure 7.3 presents the convergence histories for the subsonic case with and without
forcing terms for 3, 4, and 5 grid levels. From these plots, it can be seen that the fine-
grid convergence level of a Multigrid calculation is affected by errors introduced as a
result of the incorrect formulation of the boundary conditions on the coarse levels. Note
that with forcing terms applied, all 3 solutions reach the same convergence level as the

fine-mesh. As the number of grid-levels increases, the coarse-mesh truncation error
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grows (without boundary forcing terms) due to the increasing mesh coarseness. This is
summarized in Figure 7.4 for the 3,4, and 5 level solutions without forcing terms. The
forcing terms therefore permit any number of grids to be used (as permitted by the

initial mesh resolution of the finest level) while still maintaining fine-mesh accuracy.

Figure 7.5 shows the efficiency gains realized in the Multigrid calculations for
various numbers of grids. The single-grid convergence rate is shown and compared to
2,3,4, and 5-grid rates for Multigrid cycles, and CPU time. CPU time is important in
Multigrid calculations, since no actual saving are realized by Multigrid acceleration if
the number of cycles required for convergence, though fewer, take longer to perform.
Note that the 3,4, and 5 grid solutions use the same amount of CPU time to reach a
converged solution. This shows that the additional work required above 2 levels is

negligible for the present Multigrid algorithm, illustrating its efficiency.

7.1.2 Transonic Case

Figure 7.6 shows the solutions for the supercritical, M., = .675 case. A small region
of locally supersonic flow develops over the bump, with a shock occurring over 3 grid
points at approximately 70% of the chord. The Mach number upstream of the shock is
1.44, and 5% total pressure loss is generated and convected downstream along
streamlines. For a normal shock of 1.44, shock tables give a total pressure loss of

5.24%, which agrees very well with the calculated loss.

Figure 7.7 shows the convergence histories of the transonic case for solutions with
and without boundary forcing terms. The same trends exist here as were realizeJ for

the subsonic case, with the untreated boundary conditions on the coarse-levels
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introducing coarse-mesh truncation error into the fine-mesh solution.

Figure 7.8 shows the difference between the single grid and 5-grid convergence
rates compared to both Multigrid cycles and CPU time. The gains realized by Multigrid
are somewhat less than for the subsonic case, but this can be attributed to the increased

convergence rate of the single-grid solution.

7.1.3 Supersonic Case

Figure 7.9 presents the results for the M., = 1.4 channel flow case. Oblique shocks
form at both the leading and trailing edge and expand as they propagate downstream
and towards the upper boundary. The leading edge shock angle is such that a standing
normal shock exists at the upper boundary where the leading edge shock impinges. The
trailing edge shock is somewhat thicker due to the effect of the expansion waves
generated over the bump. As the leading edge shock is reflected from the upper wall, it
is weakened as it passes through the trailing edge shock and then intersects the lower

wall before being weakly reflected.

Figure 7.10 shows the single grid convergence rates for the supersonic case
compared to the 5-grid computations. Applying or not applying the boundary forcing
terms made no difference in this case. The single grid solution converges very quickly,
while the Multigrid solution is somewhat slower than in the previous cases, resulting in
a large decrease in the overall Multigrid efficiency. This is due to the increased flow

speed.

As the overall speed of a flow increases, single-grid convergence rates tend to



62

increase, and Multigrid efficiency drops. This can be shown by a comparison of the
convergence rates, with and without Multigrid acceleration, of the above 3 cases, shown
in Figure 7.11. The convergence rates of the single-grid solutions increase with Mach
number, while the Multigrid convergence rates remain approximately the same.

Therefore, the Multigrid efficiency gains are limited by the fine-mesh.

7.2 Viscous Flat Plate

As a first step in validating the present code for the solution of the full Navier-
Stokes equations, laminar viscous flow was computed over a flat plate. A 65x33
algebraically stretched mesh was used for these computations, shown in Figure 7.12,
with minimum increments of Axmin = .01 and Ay, =.0025. The leading edge of the

plate begins one unit in from the inlet boundary and extends the length of the domain.

Flow tangency is enforced along the lower wall upstream of the plate. At the upper
wall, the normal velocity is extrapolated from the interior, and the pressure, tangential
velocity, and density are specified as having freestream values. The inflow boundary
conditions are the same as those used in the inviscid channel flow solutions. However,
due to the non-isentropic nature of the boundary layer that passes through the outflow
boundary, pressure is specified and the other variables are extrapolated from inside the
domain. For this calculation, the exit pressure is specified as freestream. A no slip
condition is enforced along the flat plate, with pressure and density obtained by
specified adiabatic conditions at the wall, ( 9T/ 0N )uay =0, and zero pressure change

normal to the wall, ( P/ 9N )y = 0.
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Figure 7.13 shows the solutions for M. =.5 and Reynolds Number:
“Re, )x=1 = 8000. The skin friction coefficient and boundary layer profiles are compared

(28]

to results obtained from a 2-D compressible boundary layer calculation'“™ utilizing 99

points normal to the wall. The velocity and temperature are normalized by freestream
values and plotted verses the boundary layer parameter, N = y/X\ch,, where Re, is

based on distance from the leading edge of the plate.

Figure 7.14 presents the convergence histories for this case with and without
boundary forcing terms. As in the inviscid computations, the level of error becomes
higher as the number of grids increases. Note that with the forcing terms applied, the
same convergence level is reached for both the 4 and 5 grid calculations. For this
viscous calculation, the error introduced by the coarse-mesh boundary conditions
without forcing terms seems to be greater than for the previous inviscid cases. This can
be attributed to the presence of the boundary layer. As the grid levels become coarser,
boundary layer resolution is not possible and so the no-slip boundary condition on these
levels is physically incorrect. The forcing terms essentially add a partial slip condition
as the first mesh line becomes farther away from the boundary, and in the limit of the

coarsest possible mesh, this is equivalent to specifying flow tangency along the wall.

However, merely specifying flow tangency on the coarse mesh levels without the
forcing terms still introduces error into the fine-mesh solution, as can be seen in Figure
7.15a. When the forcing terms are utilized, all coarse-mesh truncation error is
effectively eliminated. In Figure 7.15b, this flow tangency condition on the coarse

mesh levels with forcing terms is compared to the no-slip condition with forcing terms,
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and the flow tangency convergence is somewhat faster. This may may be due to an

over-relaxation at the boundaries resulting in increased steady-state convergence.

Figure 7.16 shows the gains in efficiency realized by Multigrid solutions for the flat
plate case. They are not as high as those obtained in the previous inviscid cases which
is typical for viscous solutions. The boundary forcing terms, although reducing the

error for the 5-grid solution, did not improve the convergence rate as was initially

hoped.

7.3 Viscous Circular Arc Bump

Subsonic, laminar flow through a channel with a 5% circular-arc bump on the lower
wall is computed. (151271291 A 65x33 mesh is used in these calculations and is shown
in Figure 7.17. The minimum Ax and Ay are the same as for the flat plate mesh, and the

stretching is applied at both the leading and the trailing edge.

Flow tangency is enforced both along the upper wall and the lower wall upstream of
the leading edge. A no-slip condition is applied over the bump and downstream of the
trailing edge. This case may also be referred to as a 10% bi-circular arc cascade with a
sting mounted at the trailing edge and extending downstream.!'>] The normal
momentum equation (Eq. 4.20) is used to determine the pressure, and density is
obtained from the wall temperature, specified for this case as the freestream total

temperature: T, =T,_. The inflow and outflow boundary conditions are the same as

for the flat plate case.

Figure 7.18 gives the solutions for M. =.5 and a Reynolds Number (based on
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chord) of 8000. Boundary layer separation occurs at 81% of the chord, with the
separation bubble extending downstream to 120% chord, where the flow re-attaches.
Skin friction and static pressure results agree very well with those given by
Kallinderis.[*®) The velocity profiles agree fairly well with those reported by Rhie.[2")
However, a slightly thicker boundary layer is predicted by Rhie, possibly due to higher
levels of artificial dissipation, and the discrepancy increases with distance over the
bump. The separation bubble occurring at the trailing edge may be seen in the contour

plots and velocity vector plots.

Figure 7.19 shows the Multigrid results for this case with and without boundary
forcing terms for 3, 4, and 5 grids. The increase in error with number of grids is greater
than that for the flat plate case, possibly due to more complex flow phenomena and the

additional stretching at the trailing edge.

Figure 7.20 summarizes the increased effect of the coarse-mesh truncation error
(without forcing terms) on the fine-mesh as the number of mesh levels increases. The
effect of applying flow tangency on the coarse grids for this viscous case is shown, with
and without forcing terms, in Figure 7.21a. The results are similar to the corresponding
flat plate case (Figure 7.15a), although there is no apparent increase in convergence rate

for the flow tangency condition with forcing terms (Figure 7.21b).

Figure 7.22 presents the efficiency of the Multigrid calculations compared to both
Multigrid cycles and CPU time with the single-grid convergence. The increase in
efficiency measured by CPU time is less than that for Multigrid cycles due to the

additional work required in calculating the viscous stresses.
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7.4 VKI Gas Turbine Rotor Blade

In the interest of applying the present algorithm to a more realistic problem, inviscid
and viscous calculations are performed here for a VKI gas turbine rotor blade.3% The
common geometric parameters for cascade calculations are defined in Figure 7.23, and

for this case are specified as:

—§-=.697 y=3335 B, =24

Where g/c is the gap-to-chord ratio, ¥ is the blade stagger angle, and B, is the inlet flow

angle.

The present computations were performed for M; = .19 and M;, = 1.0, where M,_
is the specified outlet isentropic Mach number which sets the ratio of exit static pressure
to upstream total pressure (see Eq. 4.19) This ratio is .53 for the current value of My, .
The flow is turned 96 degrees to a final steady-state outlet flow angle of approximately

72 degrees.

7.4.1 Inviscid Case

Figure 7.24 shows the 73x17 C-mesh used for the inviscid calculations. At the
inlet, Riemann Invariant boundary conditions are used (see chapter 4) with specified
total pressure, total temperature, and flow angle. The outflow boundary conditions use
characteristic variables with a specified exit pressure. Periodicity is enforced along the

upper and lower boundaries, and flow tangency is enforced on the blade.

Figure 7.25 gives the inviscid results. All surface quantities are plotted along the

blade’s coordinate system, not the axial distance. The local isentropic Mach number is
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given as !

%
1

2 —
M;s = (—Y—:ﬁ[ (p/ Po, y¥=Diy 1 } (7.1

Comparisons are made with blade-to-blade H-mesh calculations performed by Arts?®”!

which used a corrected viscosity scheme, and with experimental results obtained by

VKI

The flow is accelerated on the suction surface until a weak shock forms. The
present calculations have smeared this region, and have underpredicted the flow
expansion, possibly due to the coarseness of the mesh and the type of artificial
dissipation that is used. The leading edge pressure gradients are very high, activating
the 2nd order dissipative terms and creating large total pressure losses. Large total
pressure losses are also incurred at the trailing edge due to the wedge-type truncation
verses a smooth, blunt rounding of the trailing edge. In order to realize minimum total
pressure loss for inviscid cascade computations, it is essential that the normal
momentum equation, tangential momentum equation, and flow tangency all be satisfied
simultaneously at each point along the blade.l®] However, this method was not used in
the present work. The weak suction surface shock and supersonic bubble may be seen

in the Mach contours at about 50% chord.

Figure 7.26 shows the convergence histories for the inviscid case. Since the
coarse-mesh truncation error is quite low for only 3 levels, the boundary forcing terms

had no effect on the convergence levels for this case. Due to a large portion of high-
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speed flow, the single-grid convergence was quite rapid, and Multigrid therefore did not

produce large savings.

7.4.2 Viscous Case

Figure 7.27 shows the 129x41 C-mesh that is used in the viscous computations.
Results for laminar flow at a Reynolds Number of 10,000 are presented in Figure 7.28.
The isentropic Mach number compares quite well with Arts'3% computations and the
experimental results.?®) However, the shock on the suction surface remains smeared
and the flow upstream of it under-expanded due to viscous smearing which occurs in
regions of high adverse pressure gradients. A large portion of low-speed flow exists
near the stagnation point, seen by the delayed onset of boundary layer development on
the pressure surface (Contour Plot). Laminar separation can be seen occurring at about

40% of the blade chord on the suction surface (velocity vectors).

Figure 7.29 shows the convergence histories for this case. 1 and 3 grid convergence
rates are plotted versus Multigrid cycles and CPU time. Multigrid produces substantial

savings for this case.



69

b)

Arc Bump (b) 4% Circular Arc Bump

Figure 7.1. 129x33 Computational Grids For Inviscid Channel Flow. (a) 10% Circular

- - T T T 1J
H H 4o 4-44- ¥
m n L i 4 H R
1 - lﬁ 44 L1 L
- - | - L1
|{- R 4 0 L L
- —4 4 -4
Jd4d
444444
jusae
[T
§
..... ]
HH HH
) & s e
¥
o)
«
59 U Gu i
S S 3
] ) g
33
I O Y 1 4 ]
- . I
H 4 —4- -4 = 443
- L H
- - L
! I




.800

.600

Mach

.400

200

0.00

0 a0

.030

.gao0

70

.300

1.00

a)

1.30

X-Pgsition

2.040

.30

-.020 :
]
-.030 — , ul ‘
0.90 .500 1.00 1,50 2.00 2.50 3.

Figure 7.2. M., =.5 Inviscid Channel Flow Solution. (a) Surface Mach Number (b)

Surface Total Pressure Loss (c) Mach Contours, AM=.05 (d) Total
Pressure Loss Contours, AP, = .01

b)

Xx-Position

co



71

Mach

c)

Total Pressure Loss

d)

Figure 7.2. Continued.




Figure 7.3.

72

100 : 3 Grids - No Forcing Terms

PRV
_10° 1
T :
2 -2 ,
C g2 1
N
:;J . .
NS
- 1
@ :
o .
0 R
N P q
1 :
> :
a .-z 5
<5 . ,
i :
1 :
~-7 .
2.°0C 123 235 C 37z C =IO
Moitigric Cycies
a)
Al
T !
k!
= ]
3 )
B 1
" 1
a H
> ‘
1
" i
- :
T
N 1
v 3
> :
s
1
1
372 C SISV
My Gr.c Z,c.es

Effect of Boundary Forcing Terms on Inviscid M., =.5 Convergence. 3
Grids: (a) No Forcing Terms (b) Forcing Terms (c) Summary. 4 Grids: (d)
No Forcing Terms (e) Forcing Terms (f) Summary. 5 Grids : (g) No

Forcing Terms (h) Forcing Terms (i) Summary

ORIGINAL PAGE 15
OF POOR QUALITY



(98] (Gp]
¢
L

Aver age dpusdt
O

o

Aver age Residual

ORIGINAL PAGE 15
OF POOR QUAUTY

73

w
Q
2.
&

swanal
e taemaad

1Y 1
: ]
: :
E ]
: . _ :
3 Without Forcing Terms i
: 1
= ’ i
3 i
k . y
3 With Forcing Terms
’ T 1
.2l70 2s.2 23C ¢ 373.¢C S0C
Molt.igrio Cyc.es

T

4 Grids - No Forcing Terms

3\

e

500

Figure 7.3. Continued.

<

)



Aver age Residual

Ruer age dpu~-dt

74

Figure 7.3. Continued.

I ' !
_!\ 4 Grids - Forcing Terms "i
! 3
3 1

1

] !
3 ]
1 1

b i
1 1
1 ]

? :
338 25.3 230.0 3732 SI

Mo Gric Cgycl.es
e)
.,
1
4
]
E Without Forcing Terms ]

4
3 / 1
7 With Forcing Terms ]

.000 125.0 250.¢ 373 0 S00.0
Multigriad Cycles
)

ORIGINAL PAGE ;s
OF POOR QUALTY



75

10! T —

10° 5 Grids - No Forcing Terms 1
— 1
0
3
2 1
0]
X
x ;
]
)
° +
o7]
>
q 1

10 -6 - 1

to”’ , , -

0.000 125.0 250.0 375.0 S00.0
Multigrid Cycles
g)
10! , . '
100 5 Grids - Forcing Terms 1

Aver age Residual

0 .00¢0 125.0 2s0 .0 37S.0 500.0
Multigrid Cycles

h)

Figure 7.3. Continued.

ORIGINAL PAGE 13
OF POOR QUALITY



Aver age dpu-dti

76

1ot , ,
100 ! 5 Grids ;
107} '; 1
107% :
1073 ; 7
Without Forcing Terms

107" / 1
1073 7 7
1078 o /

71 With Forcing Terms }
1077 , . ,

0,000 125.0 250,0 375.0 300.0

Multigrid Cycles
i)

Figure 7.3. Continued.



77

101 T T T T
3
100 o Without Forcing Terms ]
107} .
s
5 107 1
Q
2 107 4 1
sy 3
R 5 Grids ]
E “ i
ri
IO-S / E
T 3 Grids
1078 }
1077 =

T T T
0.000 1235.0 230.0 375.0 500.0
Multigrid Cycles

Figure 7.4. Increase In The Influence Of Coarse-Mesh Truncation Error On Fine-Mesh
Convergence As The Number Of Grids Increases

ORIGINAL PAGE IS
OF POOR QUALITY



78

Aver age Residual

0.0000 1000.0 2000.0 3000,0
Multigrid Cycles

a)

Aver age dpu~-dt

10-6 1 50"‘" E
1077 , x
0.00¢ 125.0 250,08 375.0 500.C
Multigrid Cycles
b)

Figure 7.5. Multigrid Efficiency For Inviscid, M,. =.5 Case. (a) 1 Grid (b) 2-5 Grids
(c) 1-5 Grids Multigrid Cycle Comparison (d) 1-5 Grids CPU Time
Comparison



79

T
N
3
Q
Y]
Q
o
n
~ E
g 3| «<— 3 Grids
< 1073+ g 4 Grids :
5 Grids
-6
10 '3 +
10°7 4 . ,
g.0Q0¢ 1000.0 2000.0 3000.0
Muitigrid Cycles
c)
10! . T
CPU Time Comparison

Aver age dpu-dt

T T 1
0.00C 30.00 100.0 1536 .0
Cpu Time
d)

Figure 7.5. Continued.



80

1.50
1,25 -
1,00

.730

Mach

. 500

250 - 4

0 O 0 T L T T
0.00 .9500 1.00 1.50 2.00 2.350 3.00
X-Position

a)

.0%0 T T T T

070 1 )

.050 A

St etasasasnmasese oo s
Ceie - o |

.030 A

010 A

1 - P,7Pg

Liatele o i e e e e e e oo ey o |

-.010 A .
-.030 A .
_-050 Y T T T T
0.00 .500 1.00 1.30 2.00 2.50 3.00
X-Position
b)

Figure 7.6. M., =.675 Inviscid Channel Flow Solution. (a) Surface Mach Number (b)
Surface Total Pressure Loss (c) Mach Contours, AM =.05 (d) Total
Pressure Loss Contours, AP, = .01



81

Mach

Total Pressure Loss

==

d)

Figure 7.6. Continued.



82

101 | T T T

100 4 Grids - No Forcing Terms

1073

107

Aver age Residual

1073

107¢ 7 1

10”7 : : ,
0.000 12S.0 2s0.¢0 375.0 500.0
Multigrid Cycles

a)

10! — T r

109 4 Grids - Forcing Terms 1

10~

Auver age Residual
o
L)
w

1073

1078

1077 . . .
0.000 125.0 e2s50.0 37S.0 500.0
Multigrid Cycles

b)

Figure 7.7. Effect of Boundary Forcing Terms on Inviscid M., = .675 Convergence. 4
Grids: (a) No Forcing Terms (b) Forcing Terms (c) Summary. 5 Grids: (d)
No Forcing Terms (e) Forcing Terms (f) Summary



Aver age dpu-sdt

Aver age Residual

4 Grids

109 » 1
;

107! 1 }

1072 1 1

1073 3 1

o™ -i Without Forcing Terms 1
: ¥ 3

1075 4 1
s /

1078 + With Forcing Terms 1

0.000 125.0 250 .0 375.0 500.0
Multigrid Cycles

c)

1ot T r T

100 1 5 Grids - No Forcing Terms 1
1070+ 1
1078 o 1
1073 -; 1
107 'g 1
1073 -; 1
107¢ - 1
to~? :

0.000 125.0 250.0 3?5.0 500.0
Multigrid Cycles

d)

Figure 7.7. Continued.



Auer age Residual

Ruer age dpu-dt

1073
1o~
1973
1078

1077

10~¢

1077

84

Multigrid Cycles

f)

Figure 7.7. Continued.

5 Grids - Forcing Terms ;
1
1
]
1
-
1
.000 125.0 250.0 375.0 500.0
Multigrid Cycles |
e)
+ 5 Grids 1
} 1
3 7
. . 3
] Without Forcing Terms
7 / 1
E 1
7 / i
3 With Forcing Terms
,000 125.0 250.0 375.0 300.0



85

10!
100
107!
1072
1073

107

Auer age Residual

1073

1078

1077 A . . T
0.0000 S00.00 1000.0 1500.0 2000.0

Multigrid Cycles
a)

109 4 5 Grids ]

—
(=]

]
e |
dad

—
o
1
n
sl
ul

107"

e

Aver age Residual
=
1
W
ad
aad.

1079 1

1076 . .

1077 , , ,
0.g000 125.0 250.0 375.0 500.0
Mulitigrid Cycles

b)

Figure 7.8. Multigrid Efficiency For Inviscid, M., = .675 Case. (a) 1 Grid (b) 5 Grids
(c) 1 and 5 Grids Multigrid Cycle Comparison (d) 1 and 5 Grids CPU Time
Comparison



Aver age dpu-dt

Aver age dpu-dt

86

T M T

Multigrid Cycle Comparison

.

107¢ 5 Grids

10-7 T T T T
0.0000 3S00.00 1000.0 1500.0 2000.0
Multigrid Cycles

)
10! r .
10° CPU Time Comparison ;
]
1
7
:
]
-6
107° 1 \scﬁa 1
107 4 T ,
0,000 50.00 100.0 150.0
Cpu Time
d)

Figure 7.8. Continued.



87

2.00 T T
1475 1
1.30 1

1,25 A

Mach

1,00 1

730 A

.300 T T
0.00 .300 1.00

1.30

X-Position

a)

2.0a

3.00

-.017 A

035 4

.052 A

070 T
0.00 .500 1.po

1,950
X-Position

b)

2.

E

2.50

3.00

Figure 7.9. M., = 1.4 Inviscid Channel Flow Solution. (a) Surface Mach Number (b)
Surface Total Pressure Loss (c) Mach Contours, AM =.053 (d) Total

Pressure Loss Contours, AP,

=.0052



88

d)

Figure 7.9. Continued.



1 Grid

Aver age Residual

0.000 125.0 250.0 375.0 500.0
Multigrid Cycles

a)

10!
10°
1071
1078
1073

107"

Aver age Residual

1073

1078

10-7 T 1 T
0.000 125.0 250.0 375.0 500.0
Multigrid Cycles

b)

Figure 7.10. Multigrid Efficiency For Inviscid, M., = 1.4 Case. (a) 1 Grid (b) 5 Grids
(c) 1 and 5 Grids Multigrid Cycle Comparison (d) 1 and 5 Grids CPU
Time Comparison



Auer age dpu-dt

Aver age dpu-dt

90

107

1073

1076 o ]
° 5 Grids 1

1077 - . :
0.000 125.0 230.0 375.0 500.0
Multigrid Cycles

c)

o
1073

1078

1077
40.0  50.0

Figure 7.10. Continued.



-
ju]
\
2
Q
U 1
e
| 4
0 .
s E
a bl
107° ‘% 1
1076 o ~ AN :
1 M= 14 M. = 675
1077 - w :
0.000C0 1000.0 2000.0 3000,0
Multigrid Cycles
a)
1
E
-
C
3 1
Q
U 1
; E
& 1 ‘
] b
k.
g ]
a 3
]
7
1077 H

T T T
0.000 125.0 250.0 375.0 500,0
Multigri1d Cycles

b)

Figure 7.11. Effect Of Mach Number On Convergence For Inviscid Channel Flow. (a)
1 Grid (b) 5 Grids

ORIGINAL PAGE IS
OF POOR QUALITY



92

Figure 7.12. 65x33 Flat Plate Computational Mesh
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Figure 7.23. Definition of Turbine Cascade Geometric Parameters
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Figure 7.24. 73x17 Computational Mesh for Inviscid Turbine Calculations. (a) Global
View (b) Leading Edge Detail (c) Trailing Edge Detail
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Figure 7.27. 129x41 Computational Mesh for Viscous Turbine Calculations. (a) Global
View (b) Leading Edge Detail (c) Trailing Edge Detail
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CHAPTER 8 - CONCLUSIONS

8.1 Major Contributions and Summary of Resuits

This work has presented initial research into the effects of coarse-mesh boundary
conditions on the convergence of Multigrid Acceleration. An explicit Multigrid
algorithm has been written and validated for a variety of both inviscid and viscous flow
computations. The basic algorithm has been fashioned after Jameson'’s finite-volume ,
Multigrid scheme which utilizes explicit, Runge-Kutta time-stepping. Forcing tcrms_E
have been derived and added to the coarse-mesh boundary conditions which permits '
them to be solved with fine-mesh accuracy, i.e., without the coarse-mesh truncation

error polluting the fine mesh solution.

In order to derive the correct interpolation procedure, or transfer operator, for the
solution at boundary points, a new, general approach to formulating the governing
equations on the coarse mesh levels has also been presented. In this approach, the
equations on the coarse-meshes have been viewed as a filtered sub-set of the fine-mesh
equations, and a general filtering operator has been derived which models this filtering
process. This approach is based on the fact that certain information is not resolved on
the coarse-mesh due to the increased mesh spacing, and, therefore, is "filtered out”. By
applying the filter to the governing fine-mesh equations, a formal description between

these and the coarse-mesh equations is given. Then, by specifying a discrete form of
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the filter, the discrete coarse-mesh equations may be formulated. The advantage to this
formulation is that any number of Multigrid schemes may be formed by specification of
different discrete filters. In this work, the filter was chosen such that Jameson’s
Multigrid scheme was obtained. Then, the boundary transfer operator and coarse-mesh
boundary forcing terms were derived.

In summary, the major contributions that have been presented in this work are:

— A new, general approach to obtaining the coarse-mesh goveming equations in
partial differential form, where they are formally related to the fine-mesh
equations

— Formulation of a boundary transfer operator that is consistent with the interior
scheme

— Derivation of forcing terms for the coarse-mesh boundary conditions

— Demonstration of the ability of these forcing terms to allow the coarsc-mcsh:'
boundary conditions to be applied on any number of mesh levels with fine-mesh”
accuracy

Flow calculations were performed for inviscid channel flow over a circular-arc
bump for subsonic, transonic, and supersonic speeds, a viscous flat plate, viscous
subsonic channel flow over a circular-arc bump, and inviscid and viscous flow over a
VKI gas turbine rotor blade. Good agreement with other results was seen in all cases,
with only a few minor discrepancies occurring. The discrepancies which occurred in
the viscous bump velocity profiles (Figure 7.18c-¢) and the inviscid turbine isentropic

Mach number distribution (Figure 7.25a) seemed to be related to the artificial

dissipation model.

Implementing the coarse-mesh boundary conditions without forcing terms
introduced coarse-mesh truncation errors into the fine-mesh solutions. This was

apparent in all cases except the supersonic bump and the VKI turbine blade. For these
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2 cases, the truncation error was apparently lower than the local round-off error. The
error introduced into the fine-mesh solution increased as the number of mesh levels
increased (Fiéurcs 7.4,7.20) due to the larger mesh spacings on the coarsest mesh.
With forcing terms, however, the fine-mesh accuracy was retained for any number of
mesh levels used. This becomes very important as problems increase in size and more
mesh-levels are used. The problems here have used relatively coarse initial meshes
with few mesh levels in the Multigrid cycle. In larger applications which don’t use
forcing terms in the boundary conditions, the number of mesh levels that could possibly
be used would be restricted due to the error that is introduced into the fine mesh
solution. This would consequently reduce the efficiency of the Multigrid solution.:
Therefore, the forcing terms, by permitting the maximum number of mesh levels to bc
used, increase Multigrid efficiency even though they don’t actually increase

convergence rates.

The forcing terms along the solid boundaries for the viscous problems were stated
(Chapter 6) as applying a partial slip condition as the mesh becomes too coarse to
accurately resolve the boundary layer. As the mesh spacing scale on the coarsest mesh
level exceeds the length scale of the boundary layer, this should be equivalent to
enforcing flow tangency along the surface. However, when flow tangency is explicitly
applied, it was shown that the forcing terms are still required to produce fine-mesh

accuracy (Figures 7.15, 7.21).

The efficiency of Multigrid acceleration was seen to decrease with increasing Mach

number for the inviscid channel flow cases. However, this may be attributed to the
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increase in efficiency of the single-mesh solutions as Mach Number increases (Figure
7.11a). The Multigrid convergence rates for the 3 cases were approximately the same,
with slightly reduced performance in the supersonic case (Figure 7.11b). The efficiency
of Multigrid acceleration for the flat plate, viscous bump, and viscous turbine blade
problems was greater in terms of Multigrid cycles than in terms of the actual work
performed, measured in CPU time (Figures 7.16¢c,d 7.22¢,d 7.29¢c,d). This is typical of
viscous problems, and is due to the additional work required to evaluate the viscous

fluxes.

8.2 Future Work

The general Multigrid approach that was formulated may be used to derive anyf:
number of discrete Multigrid schemes based on a specified filter, or prescribed method '
of transferring the solution and residuals. In this work, only one such filter was looked
at: the simple 4-cell volume weighted averaging as given in Jameson’s scheme. Future
work may entail the derivation of various other filters and a study of their effect on the

performance of Multigrid acceleration.

Further study could also be performed into the reasons behind the effect of Mach
number on convergence, based on the observations made for the inviscid channel flow
problem. For the Multigrid solutions to this case, not much difference existed between
the convergence rates, although the supersonic Multigrid convergence was the slowest

of the three, exactly opposite from the single-mesh convergence rates.

Finally, a more robust dissipation model could be pursued. Some difficulties are

realized when performing Euler calculations on very fine, highly stretched meshes,
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possibly due to the scaling that is used. Alternative scaling theories could be studied,
i.c., based on something other that the maximum spectral radii of the convective

Jacobian matrices.
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